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Gravity wave characteristics in the middle atmosphere derived 
from the Empirical Mode Decomposition method 

Xun Zhu, •,2 Zheng Shen, 2 Stephen D. Eckermann, 3,4 
Michael Bittner, s Isamu Hirota, 6 and Jeng-Hwa Yee • 

Abstract. The recently developed Empirical Mode Decomposition (EMD) method is 
applied to analyzing gravity wave characteristics in the middle atmosphere. By establishing 
a close connection between the fundamental Intrinsic Mode Functions (IMFs) derived 
from the EMD method and WKB solutions of a dispersive-dissipative wave equation, we 
show that the EMD method can provide useful insights into physical processes in the 
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power spectrum function P is introduced which provides a quantitative description of the 
spectrum at any particular location within a data series. The sharp localization of P in 
space and wavenumber leads to an identification of unphysical small scale oscillations by 
falling spheres embedded in the wind profiles above 60 km. Further analyses of the 
horizontal wind profiles derived from the Dynamics Adapted Network for the Atmosphere 
(DYANA) campaign suggest that for horizontal wind fluctuations with vertical 
wavenumber m _< 3 km -• (or vertical wavelength L z -> 2 km) the previously observed 
m-3 Fourier spectra could be produced by a linear wave packet whose characteristic 
vertical wavenumber decreases with altitude. For small vertical scale disturbances with 

m > 3 km -• (L z < 2 km) a near -3 slope in the marginal distribution exists locally in 
the middle atmosphere with a great degree of universality, suggesting that nonlinear 
energy cascade processes may dominate the spectral formation in this wavenumber range. 

1. Introduction 

In recent years, internal gravity waves have been extensively 
studied in the middle atmosphere for two major reasons. First, 
there are strong reasons to believe that gravity waves are the 
primary source of the observed mesoscale fluctuations in the 
middle atmosphere. Second, the deposition of the momentum 
and energy carried by the gravity waves plays a central role in 
establishing the large-scale circulation and structure of the 
middle atmosphere. Many observations have suggested a sim- 
ple form of m-P with p - 3 for the Fourier vertical wave- 
number m power spectra of horizontal velocity and relative 
temperature fluctuations in the atmosphere at large m. Many 
different theories have been developed to explain the nearly 
m - 3 spectra observed at large m [e.g., Dewan and Good, 1986; 
Smith et al., 1987; Weinstock, 1990; Hines, 1991; Gardner, 1994; 
Zhu, 1994], without certainty of which theory, if any, is valid 
[Gardner, 1996]. 

Clearly, to better parameterize the drag and eddy diffusion 
induced by gravity waves in the middle atmosphere, it is im- 
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portant to identify the major physical mechanisms driving the 
observed m- 3 power spectra. Some of the difficulties involved 
in identifying the dominant physical mechanism could be as- 
sociated with the strong inhomogeneity of the atmosphere. 
Vertically propagating gravity waves subject to atmospheric 
stratification and wind shear have nonstationary wave ampli- 
tudes [e.g., Eckermann, 1990; Hines, 1991]. On the other hand, 
traditional Fourier spectral analysis decomposes a series of 
data into a linear combination of infinite harmonic functions 

which have constant amplitudes over the whole data series. 
Thus Fourier methods are not ideal for studying nonstationary 
gravity wave process. There are many useful tools in data 
analysis that provide both spatial and wavenumber information 
to study nonstationary processes [e.g., Daubechies, 1992; 
Cohen, 1995]. For example, wavelet analysis has been applied 
to studying spatial and temporal variations in gravity wave 
activity measured in the lower stratosphere [Sato and Yamada, 
1994; Shimomai et al., 1996; Bacmeister et al., 1996, 1997]. 

Recently, a new technique called Empirical Mode Decom- 
position (EMD) has been developed to study the nonlinear 
and nonstationary properties of time series [Huang et al., 1997]. 
The EMD method has been shown to be superior in some 
circumstances to existing data analysis tools such as the wavelet 
analysis [Huang et al., 1997]. In this paper, the EMD method is 
used to assess the predictions of current linear and nonlinear 
gravity wave theories of the observed m - 3 power spectra in the 
middle atmosphere. 

In the next section we first review the EMD method and 

show that the fundamental Intrinsic Mode Functions (IMFs) 
derived from the EMD method are closely related to the WKB 
solutions of an equation describing dispersive-dissipative wave 
phenomena. In section 3, a two-dimensional distribution func- 
tion called local power spectrum denoted by P(z•,, me) is 
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introduced to provide a quantitative description of space- 
wavenumber (z-m) localization, where z and rn are the alti- 
tude and vertical wavenumber, respectively. Similarities and 
differences between the marginal distribution of P(z k, me) 
and the Fourier spectrum of a data series are clarified. Section 
4 discusses the local power spectrum calculated from the ob- 
servations. Section 5 identifies one IMF as a characteristic 

gravity wave component in the middle atmosphere. Finally, in 
section 6 we summarize our EMD-derived results for gravity 
waves. 

2. Local Wavenumber and Empirical 
Mode Decomposition Method 

Given a digital signal or a data series of a quantity u ex- 
pressed as a real function of a time or space variable •, u(•), 
one can construct a complex signal, U(•), by adding an imag- 
inary function it2(•) to the original signal 

where 

and 

U(•) = u(•) + iti(•) = U0(•) exp [i0(•)], (1) 

u0() = + (2) 

arctan (3) 
are the amplitude and the phase of the signal, respectively 
[Cohen, 1995]. When the independent variable • represents 
space (time), a local wavenumber (instantaneous frequency) 
can be derived from (3) 

- 
qb' = U02() , (4) 

where the prime denotes the derivative (i.e., •' = d O/d•). In 
this paper, we are mostly interested in wind fluctuations as a 
function of space. Therefore a local wavenumber K(•) = •' (0 
for the complex signal u (•) is provided by (4). When expressed 
in terms of amplitude and wavenumber, the complex signal (1) 
can also be written as 

U(•) = U0(•) exp i K(z) dz . (5) 

An optimal choice for the imaginary function it2(•) that 
gives an unambiguous local wavenumber is the Hilbert trans- 
form of the signal u(•) [Cohen, 1995], defined as 

1 •-•o• u(z) dz H[u(•)] = ti(•) = • •- z ' (6) 

where the integral is a Cauchy principle value and H is the 
Hilbert transform operator. The complex signal thus defined 
by (1) and (6) is called an analytic signal belonging to u(•) 
[e.g.,Bracewell, 1986; Cohen, 1995]. Likewise, Uo(•) and 
are the amplitude and wavenumber of the analytic signal be- 
longing to the original signal u(•). Cohen [1995] shows under 
certain restricted conditions that for the analytic signal defined 
by (1) and (5) there is no overlap between the wavenumber 
spectra of Uo(•) and exp [iqb(•)]. In other words, the process 
of constructing an analytic signal U(•) from a real signal u ( 

is to put the slowly varying content of u (•) into the amplitude 
Uo(•) and to put the fast varying content into exp [iqb(•)]. 
Mathematically, as long as the Hilbert transform (6) exists, one 
can always find an amplitude Uo(•) and a wavenumber 
from (2) and (4) for any real function u(•). However, the 
derived Uo(•) and g(•) based on such a direct procedure are 
not always physically meaningful. The difficulties are summa- 
rized by Cohen [1995] into five paradoxes about the properties 
of the local wavenumber. It turns out that the major difficulties 
in finding physically meaningful local wavenumber and ampli- 
tude for a real signal depend on how well separated the spectra 
of Uo(•) and exp [iqb(•)] are. The recently developed Empir- 
ical Mode Decomposition (EMD) method helps to resolve this 
key issue by decomposing a real signal u(•) into a set of 
different components so that the Uo(•) spectrum and exp 
[i qb(•)] spectrum for each component are separated [Huang et 
al., 1997]. In the following, we briefly review and extend the 
basic ideas of EMD method. 

It is noted that (5) often appears as a WKB solution of a 
wave packet to a wave equation that includes both dispersive 
and dissipative phenomena [e.g., Bender and Orszag, 1978] 

d2U 

d• 2 + n2U = 0, (7) 
where the refractive index n describes wave-medium interac- 

tion and it can be complex. We define the complex refraction 
index by rt 2 = rt 2 + in• 2. In general, the dispersive phenom- 

2 whereas the enon is described by a spatial variation of n r, 
dissipation effects are formulated by a nonzero n/2 term. When 
expressed in terms of (5), the WKB solutions of (7) are given 
by [e.g., Einaudi and Hines, 1970; Wait, 1981] 

C1, 2 • r/i(t) 2 
U0(•) -- •/t/r(•) exp +_ /•r(t) dt, (8a) 

K(•) -- nr(•), (8b) 

where C•,2 are integration constants for each of two wave 
packets propagating in opposite directions. The posterior con- 
dition that (5) and (8) are valid solutions of (7) is a slowly 
varying envelope of the wave packet for each wave component 
[e.g., Einaudi and Hines, 1970; Wait, 1981] 

I l d2Uol •/2 
If we define the left-hand side of (9) as a local characteristic 
inverse scale K(•) of the envelope for the wave packet, then 
the validity condition of the WKB approximation can be re- 
written as 

1 d2U01 -- << (10) 

Therefore, in order that an analytic signal (5) represents a 
physically meaningful wave packet with an envelope Uo(•) and 
a local wavenumber K(•), the local characteristic inverse scale 
of Uo(•) should be well separated from the local wavenumber 
g(•) of the analytic signal. Condition (10) can be considered as 
an acceptable working criterion for sufficient separation be- 
tween the Uo(•) spectrum and exp [iqb(•)] spectrum. 

Condition (10) requires the spectral separation at local 
points of •. We can also propose the following global condition 
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Figure 1. Real signals of a superposition of two sinusoidal waves defined by (12) with a i = 1, a 2 = 1.5, 
and kl - 1: (top) k2 = 0.9; (middle) k2 = 0.5; and (bottom) k2 = 0.1. The dotted lines denote 0. 

for spectral separation by defining a wave energy-weighted 
index of separation X 

1/2 

1 ft. d2Uø 
x -- << 

where L is the total length of a digital signal. 
To illustrate the above conjecture more clearly and to see 

how the EMD method generally results in a clear separation 
between K(•) and K(•) for each empirical mode, we now 
consider a well known example of a superposition of two si- 
nusoidal signals with different wavenumbers 

u(x) = al cos (klX) + a2 cos (k•x). (12) 

Without loss of generality we first fix the values of a i = 1, 
a2 = 1.5, and kl = 1. Letting k2 change between 0 and 1, we 
then examine Uo(x), K(x), and K(x). In Figure 1 we show 
three plots of u (x) with decreasing values of k2 from 0.9 to 0.1. 
Although the high frequency oscillatory feature kl = 1 exists 
in all three signals, Figure 1 shows that the basic character of 
the large-scale variations is totally different. When k2 • k l, 
the signal resembles a wave packet with slowly varying enve- 
lope, while when k2 << k l, the signal represents small scale 
disturbances riding on a large-scale background field. The an- 
alytic signal belonging to (12) can be derived easily based on 
the basic formula H[cos (kx)] = sin (kx) [e.g., Bracewell, 
1986; Karl, 1989]. The local amplitude Uo(x) and the local 
wavenumbers •(x) and K(x) defined by (2), (4), and (10) for 
the analytic signal are [Cohen, 1995] 

Uo(x) = [(al- a2) 2 + 4ala2 cos 2 (kax)] 1/2, (13a) 

K(X) "- k m -- •d S0(x)2 , (13b) 
Ikl 

K(x) = S0(x)2 
ß 14axa2[(a1- a2)2cos (2max) q- 4ala2cos4(kax)]l 1/2, (13c) 

where km and ka denote the average and the difference of the 
two basic wavenumbers 

kl- k2 kl + k2 
kd -- 2 ' km= 2 ' (14) 

Figure 2 shows the plots of Uo(x), g(x), and K(x) for the 
three cases. The indices of separation X for the three cases are 
0.061, 0.432, and 1.35, respectively. We may immediately con- 
clude the following: (1) when the conditions (10) and (11) are 
well satisfied as in the case k 2 = 0.9, the local wavenumber 
•((x) approximately equals the fast varying basic wavenumber 
kl in the original real signal and varies slightly withx; (2) when 
(10) and (11) are not satisfied, the local wavenumber •((x) 
departs significantly from the basic wavenumber kl or becomes 
negative. To see how the index of separation X also varies with 
the amplitudes a i and a 2 of basic sinusoidal waves, we show in 
Figure 3 the plot of Loglo (X) as a function of two parameters 
• = a2/a I and • = ka/km, where 

X - 18-1 q- 8 q- e(8 -1 -- a) l' ( 
Figure 3 shows that the index of separation X will be small 
when the amplitudes of the two basic wave components differ 
significantly (a i << a2 or a 2 << a 1) even if their wavenum- 
bers differ significantly (e --• 1). Clearly, the local wavenumber 
of the analytic signal under such a circumstance is approxi- 
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Figure 2. The amplitude Uo (solid lines) and local wave numbers K(x) (dashed lines) and K(x) (dash- 
dotted lines) of the analytic signals belonging to the real signals of Figure 1. The dotted lines denote 1. 

mately equal to the basic wavenumber that has a dominant 
amplitude. A signal with a • << a 2 or a 2 (( a • corresponds to 
a major wave component with a small riding wave or with a 
small asymmetric distortion, respectively. 

Returning to Figure 1 where a • --- a2, we find that the fast 
varying mode corresponding to k• --- 1 exists visibly in all the 
signals no matter what the local wavenumber K(x) is. The 
central idea of the EMD method is to separate locally the fast 
varying mode from the background slowly varying mode by a 
recursive sifting process [Huang et al., 1997]. The sifting pro- 
cess extracts a signal by subtracting the mean of two envelopes 
which are formed by smoothly interconnecting local maxima 
and local minima in the data series, respectively. Each such 
signal is called an Intrinsic Mode Function (IMF). Each IMF 
is subtracted from the data series, and the process is repeated 
until all the variability in the data series is decomposed into a 
number of these IMFs. Generally speaking, each IMF has the 
form of a wave packet which satisfies the validity condition 
(10). For a more precise definition of the IMF, detailed devel- 
opment and implementation of the EMD method, Hilbert 
spectrum analysis, and their various applications in analyzing 
nonlinear and nonstationary time series, readers are referred 
to the work of Huang et al. [1997]. When applying the EMD 
method to the present example (Figure 4), we recover the two 
basic sinusoidal components as their IMFs for the second and 
third cases where the condition (10) and (11) are not well 
satisfied. However, the IMF for the first case is the signal itself 
that has a slight local wavenumber modulation and a significant 
amplitude modulation in space. 

Since the derived IMF for the first case is a wave packet with 
an amplitude and wavenumber modulation, then the EMD 
technique may be particularly useful in analyzing and inter- 
preting dispersive-dissipative wave-related data. We know 
from the construction that the signal in case 1 corresponds to 
a superposition of two sinusoidal waves with distinct wavenum- 

bers and constant amplitudes. On the other hand, the wave 
packet IMF derived from the EMD method and indicated by 
(5) and (13) suggests that there exists only one mode in the 
original signal. Although the two expressions are identical 
mathematically, they may have different physical origins. For 
example, the signal in the first case can be produced either by 
two wavemakers that have distinct frequencies and constant 
amplitudes or by one wavemaker with a fixed frequency and a 
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Figure 3. Logarithm of index of separation, Logre(X) , as a 
function of Log•o(8) and s. 
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Figure 4. EMD of a superposition of two sinusoidal waves: IMFs decomposed from real signals of Figure 
1. The solid lines are the first components of IMFs corresponding to high frequency oscillations. The dashed 
lines are the second components of IMFs corresponding to low frequency oscillations. In the top panel there 
is only one IMF since the second IMF vanishes. 

slowly variable amplitude. In the later situation the medium is 
inhomogeneous, and nr is slowly varying according to (13b). 

Since both expressions of the signal may have their own 
physical origins, the question naturally arises as to which 
method provides a better spectral decomposition. Can we bet- 
ter identify the actual physics behind the signal by using the 
EMD method rather than the traditional Fourier analysis? The 
answer is generally "yes" for nonstationary wave-related data 
since IMFs derived from the EMD method provide further 
information on spatial variation in addition to the amplitude 
and wavenumber for each mode. Huang et al. [1997] present 
many examples extracted from numerical results of nonlinear 
equation systems and actual data to show the power of the 
EMD method. In the next section we define a local power 
spectrum and its marginal distributions which can be applied to 
analyzing the gravity wave characteristics in the middle atmo- 
sphere. The result will help us to understand what mechanism 
is mainly responsible for the observed universal spectrum of 
gravity waves in the middle atmosphere. 

Our validity condition (10) or (11) provides a precise and 
quantitative assessment of the separability between the Uo(•) 
spectrum and exp [i tk(•)] spectrum. It also provides a natural 
link between the numerical derived IMFs and their physical 
background of dispersive-dissipative wave packets. Further- 
more, such a condition is also theoretically crucial for calcu- 
lating and understanding a well-behaved local wavenumber (or 
instantaneous frequency). Although the connection between 
the validity condition of a WKB solution for a wave packet and 
the separability condition for an analytic signal is natural and 
inevitable, previous studies in signal processing have appar- 
ently missed such a connection. For example, Boashash [1992] 
introduced the notion of monocomponent signals in order to 
find a well-behaved instantaneous frequency. However, his in- 

vertibility condition excludes most of the signals of unmon0to- 
nous property which do have a well-defined instantaneous fre- 
quency. We have noted that, historically, a WKB soltition is 
mostly used for solving (7) where the independent variable is 
space, while in signal processing the independent v. ariable is 
usually time. To conclude this section, we further emphasize 
here that both expressions of the signal for the case 1 in Figure 
1 have their own physical backgrounds. On the. basis of the 
connection between the separation condition of the spectra 
and the validity condition of the WKB approximation we ex- 
pect the EMD to provide a natural basis for the hnalysis of 

, 

signals which contain dispersive-dissipative wave phenomena. 

3. Local Power Spectrum and Its 
Marginal Distributions 

To illustrate how the EMD method may be helpfull. to un- 
derstanding the gravity wave characteristics in the middle at- 
mosphere, we need to introduce a distribution functi6n that 
represents the energy density distribution as a fdn•tion of 
space and wavenumber. To show the motivation behind its 
definition, let us consider an idealized wave 15acket of velocity 
perturbation 

u(z) 

exp (z/20) sin [200 exp (-z/21)] 0 • z < 50 km; = exp (2.5) sin [200 exp (-z/21)] 51• _< • -< 65 kin. 
(16) 

Figure 5 shows the velocity profile u (z), its Hillsert transfo3m 
H[u (z)], and the wave packet amplitude of the hnalytic õignal 
Uo(z). Both expression (16) and Figure 5 suggest that the 
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Figure 5. An idealized wave packet of velocit7 perturbation u (z) (solid line), its Hilbert transform H[u (z) ] 
(dashed line), and the amplitude of the analytic signal Uo(z) (dash-dotted line). 

wave packet is an IMF because the validity condition (10) is 
well satisfied. Figure 6 shows the local vertical wavenumber 
m (z) and characteristic inverse scale of its amplitude envelope 
M(z) of the analytic signal based on the definitions (4) and 
(10), respectively. Two spikes in m(z) and M(z) at 50 km are 
caused by the discontinuity of du/dz at 50 km. Rapid variations 
in M(z) close to boundaries are due to the edge effects when 
performing the Fourier transform to derive H[u(z)] [e.g., 
Karl, 1989]. Furthermore, evaluation of the second derivative 
in (10) numerically enhances any errors, since it usually in- 
volves calculating small differences of large terms. In practice, 
more realistic criteria of standard deviation and indices of 

orthogonality [Huang et al., 1997] are used in deriving the 
IMFs. 

By combining Figure 5 and Figure 6 one can establish a 
one-to-one correspondence at each altitude between the am- 
plitude of the analytic signal Uo(z) (or its square Uo(z) 2) and 
the local wavenumber m(z). The distribution of energy as a 
function of wavenumber and space, referred to as the Hilbert 
spectrum, is introduced by Huang et al. [1997] to describe the 
nonlinear and nonstationary effects of various signals. In the 
present applications of analyzing a gravity wave spectrum a 
more relevant quantity is the energy spectral density or the 
power spectrum, F(m), which often shows a near -3 power 
law at large m. In this section we first introduce a distribution 
function which we call the local power spectrum. We then 
suggest that different physical mechanisms for the gravity wave 
spectrum may lead to different observed structure in the local 
power spectrum even though the corresponding standard 
power spectra F(m) are indistinguishable for different pro- 
cesses. 

In the work of Huang et al. [1997], comparisons are also 

made between the EMD method and other time-frequency 
analysis techniques such as wavelet analysis and the Wigner 
distribution. Wavelet analysis can be considered as an im- 
proved windowed Fourier transform where the scales are ad- 
justable but the basis functions are specified beforehand [e.g., 
Daubechies, 1992; Kaiser, 1994]. On the other hand, the Wigner 
distribution derives internally determined basis functions from 
the signal itself, but the transform is quadratic rather than 
linear [Cohen, 1995]. The EMD method possesses both merits 
of linearity and internally determined basis by expressing any 
signal as a linear superposition of a finite number (J) of ana- 
lytic signals belonging to their IMFs [Huang et al., 1997] 

u(z) = Re • Uoj(Z) exp i mi(,) d, , 
j=l 

(17) 

where Re { } denotes the real part of the complex signal. 
Note from (17) that at a given altitude z there exists only a 
finite numbers of wavenumbers mi(z ). Therefore it is conve- 
nient to discretize both space and wavenumber variables ac- 
cording to 

Zk = Z0 + (k - 1/2)Az k = 1, 2, '", K. (18a) 

me+i = me + Ame t• = 1, 2, "., L. (18b) 

In the computational algorithm the altitude z will be assigned 
to Zk if Zk -- AZ/2 < Z --< Zk + AZ/2. A similar procedure is 
also applied to discretizing the wavenumber m i according to 
the limits in (18b). The local power spectrum at a space- 
wavenumber point (Zk, m e) is defined as 
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1 • [U0/(Zk; m/(zk))] 2 P(Zk, me) = • (Ame) 
j=l 

L 

8(m,, mj), (19) G(Zk) = •-• • P(Zk, me)Ame k = 1, 2,..., K. 
•=1 

where 8(me, mj) is the Kronecker 8 function 

1, rne=mj(zk); 8(me, mj) = O, me 4: mj(zk). (20) 
In (19) we have written Uoj(Zk) as Uw(zk; mj(zk) ) to indicate 
that the amplitude is evaluated at z = Zk where the corre- 
sponding vertical wavenumber is m•. Clearly, the local power 
spectrum P(Zk, rn e) is nonnegative and has the conventional 
units of a spectral density, in this case variance per unit wave- 
number. The factor 1/L in the definition makes P(Zk, me) 
nearly constant for different resolutions of the wavenumber 
(e.g.,L* = 2L if Am* = Ame/2) P(zk, me) can be con- e ß 

sidered as a two-dimensional discrete probability density func- 
tion with the normalization constant 

K L 

N* =- • • P(z•, me)•me. (21) 2K 
k=l 

The two marginal distributions associated with P(Zk, tn e) can 
be defined as 

K 

F(me) = • P(z•, me) e = 1, 2, ..., L; (22a) 
k=l 

(22b) 

Here the marginal distribution F(m e) is a measure of power 
spectrum at the wavenumber rn e, while G (Zk) is the variance 
at the altitude Zk. Under the condition of constant Uoj and m• 
such as in the last two cases of Figure 1 the normalization 
constant is the average energy of the real signal u (z); that is, 

1 K 
Nu = • • u(z0 2, (23) 

k=l 

and the marginal distribution F(m e) is the power spectrum of 
u (z) derived from the Fourier transform. In Plate 1 and Figure 
7 we show the local power spectrum P(Zk, me) and its mar- 
ginal distribution F(rn e), respectively, for the wave packet 
signal (16) where it has only one IMF (J = 1). To demon- 
strate that the EMD method is superior to the. wavelet analysis 
in this case, we also present in Plate 1 the local power spectrum 
of wavelet analysis by replacing the amplitude Uo in (19) with 
the continuous wavelet transform [Daubechies, 1992] 

Co(Zk, me) = -• u(r)½* dr, (24) 

where a = rr/me is the scale parameter and the asterisk 
denotes complex conjugation. The standard Morlet wavelet 



16,552 ZHU ET AL.: GRAVITY WAVE CHARACTERISTICS IN THE MIDDLE ATMOSPHERE 

10 4 

10 0 

10 -2 I '"' i i l, , i i, i i, i J , i i i, i ,i i i , ,, ' d i , I 

• F(EMD) I ......... F(Fourier) 
I I I 

10 -• 10 0 10 • 10 • 

Vertical Wavenumber m (km -•) 
Figure 7. Marginal distribution F(m e) derived from EMD method (solid line) and power spectrum derived 
from the Fourier transform (dashed line) for the idealized wave packet of Figure 5. 

qt('r) = Ce-'r2/ø•2(e ivr'r - e -•2"2/4) with C = X/-•/ot and a = 4 
has been used in Plate 1. We can see from Plate 1 that although 
the wavelet analysis provides space-wavenumber information 
for the signal, the spread of the actual local wavenumber to 
neighboring heights is unavoidable because Co(zk, me)' is a 
contlnuous function of space and scale. On the basis of the 
construction of our idealized waveform (16) we can conclude 
that such a spread represents an energy leakage in the wave- 
number domain due to a less-than-ideal choice for the basis 

function. Mathematically, this is also due to the admissibility 
condition of the mother wavelet qt(z) that yields a nonsingular 
property of qt(z) at z = 0. More examples of comparison 
between the EMD method and the wavelet analysis are pre- 
sented by Huang et al. [1997]. 

F•'om the definition of the local power spectrum we know 
that each IMF corresponds to one curve in the two- 
dimensional contour plot P ( zk, rn e)- As the number J of IMFs 
increases, one expects a smoother contour plot P(zk, rn e) that 
may provide a continuous and positive distribution function. 
However, in real applications, J usually is a small number. For 
example, to test our sifting program, we applied the EMD 
method to a data series believed to be most irregular and 
unpredictable: a 30-year long record of the composite index of 
The New York Stock Exchange with 7592 trading days. Apply- 
ing the EMD method to the time Series yields only 10 IMFs 
with timescales ranging from daily variability to an interdec- 
adal oscillation. Therefore, in principle, P(z•,, me) is discrete 
in wavenumber (m e). 

It should be noted, however, that a signal or a data series can 

be considered as a realization (or a sample) of a physical 
system. In many applications the actual distribution function 
P(Zk, rn e) of a physical system can be derived by an ensemble 
average of many independent realizations. Under these cir- 
cumstances, P (zk, rn e) may show its continuous nature in both 
space and wavenumber if the actual physical system behaves in 
such a manner. In the present application to the vertical wave- 
number spectrum of gravity waves in the middle atmosphere, 
P(zk, me) is expected (according to some models) to be con- 
tinuous due to sporadic wave generation, dispersive wave prop- 
agation, and nonlinear wave-wave interactions. Other models, 
however, suggest it may be somewhat more discrete in certain 
circumstances [e.g., Alexander, 1996; Warner and Mcintyre, 
1996]. 

When there is a frequency or an amplitude modulation in an 
IMF, the marginal distribution F•ai>(m) and the Fourier 
spectrum FFourier(m) will be different. For example, from (13) 
we find F•ai>(m) for the IMF in Figure 1 to be 

e.uD(•) = (25) • -km' 

where the wavenumber •( varies continuously within a wave- 
number domain of a finite support [k,• + ka(a 2 - a•), 
k,• + ka(a 2 + ax)]. Outside such a finite wavenumber sup- 
port, FE•ai>(m) vanishes. On the other hand, the Fourier spec- 
trum FFourier(m) of the same signal consists of two spectral 
lines located at •( = kx and •( = k2, respectively. As we have 
already discussed in the previous section, either form of 
FEMD(K ) or FFourier(m ) may correctly correspond its own 
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physical process. One usually cannot identify the actual phys- 
ical process based on differences between FEMD(m) and 
FFourier(m ) alone. This example also shows the importance of 
choosing different spectral analysis tools in analyzing the data. 
The Fourier spectrum resolves two harmonics since it assumes 
that the series is a superposition of infinite constant amplitude 
harmonics. Thus the only way for it to represent a slowly 
varying amplitude is to split it up into two harmonics which 
beat when retransformed. The EMD method avoids this and 

gives a direct picture of amplitude modulation of the wave 
packet. However, conversely, the EMD method cannot resolve 
two closely spaced harmonics due to the acceptable separabil- 
ity criterion (10) or (11). In the real applications, such as in the 
present situation, when a data series is associated with physical 
processes which can be approximated by the wave equation (7), 
the EMD method is expected to yield a better decomposition. 

For a real signal with multi-IMFs and a finite length its 
FEMD(m ) will still be a continuous function of a finite wave- 
number support because the local wavenumbers are 'continu- 
ous functions of space. On the other hand, the Fourier spec- 
trum of a finite length signal FFourier(m ) will be unlimited in 
wavenumber space. The cutoff wavenumbers are determined 
mainly by how the continuous signal is sampled [e.g., Karl, 
1989; Harris, 1978]. It is a notoriously difficult problem to find 
a positive space-wavenumber (or time-frequency) distribution 
that satisfies the specified marginal distributions [Cohen, 1995]. 
Because our marginal distributions (22) are defined by the 
nonnegative local power spectrum, the required condition of a 
two-dimensional probability density is satisfied automatically. 
Although our marginal distributions, such as FE•D(m ), are 
different from the marginal distributions specified in the usual 
time-frequency analysis [Cohen, 1995], such as FFourier(m), 
the marginal distributions are physically meaningful as we dis- 
cussed in the last section. Therefore the local power spectrum 
P(z•,, me) is clearly an appropriate distribution function. 

It is also noted that the Fourier spectrum FFourier(m ) de- 
rived in turbulence studies also represents an ensemble aver- 
age of many independent realizations. However, for homoge- 
neous turbulence where the flows are considered to be 

stationary in time the ergodic theorem ensures that the ensem- 
ble average is the same as the average over a long data series 
[e.g., Panchev, 1971; Frisch, 1995]. Examining Figure 5 clearly 
shows that the wave packet is not a stationary signal. Therefore 
additional cautions should be exercised to interpret FFourier(m ) 
when it is derived from only a few data series. 

4. Gravity Wave Characteristics 
in the Middle Atmosphere 

On returning to Figure 7 we are now in a position to dem- 
onstrate some of the usefulness of the EMD method and the 

local spectrum P(z•, me) in the analysis of gravity-wave data 
in the middle atmosphere. We have already discussed the dif- 
ferences between FE•D(m) and FFouricr(m) in terms of their 
physical interpretations. The most significant difference is that 
they use a different set of basis functions to decompose the 
data, as shown in Figure 7. However, within the major part of 
their common wavenumber domain, FE•D(m) is very close to 
FFour•½r(m) since both functions represent the wave energy per 
wavenumber. In the present example of the idealized wave 
packet shown in Figure 5, both FE•D(m) and FFouricr(m) 
exhibit a -3 slope in their Log (F)-log (m) plots. This is 
consistent with the vertical wavenumber spectra derived from 

many observations [e.g., VanZandt, 1982; Tsuda et al., 1989; 
Wu and Widdel, 1989, 1992; Senft and Gardner, 1991]. Although 
the -3 slope of FEMD(m) and FFourier(m ) in the present 
example can be considered as coincidental, the idealized wave 
packet shown in Figure 5 resembles observations in several 
respects. First, observations also show that the amplitude of 
internal gravity waves increases exponentially with altitude 
[e.g., Hirota and Niki, 1985] but that wave amplitudes tend to 
be constant with height in the mesosphere [see, e.g., Tsuda et 
al., 1994, Figure 7]. The first observation is consistent with the 
notion that the density effect of the background atmosphere 
amplifies the upward propagating gravity waves [Hines, 1960], 
whereas the second observation is consistent with the per- 
ceived "saturation" of wave amplitude at mesosphere heights. 
Second, changes of refraction index associated with back- 
ground wind shear and varying static stability also alters the 
vertical wavenumber [e.g., Bleistein, 1984; Bretherton, 1966; 
Zhu, 1987; Marks and Eckermann, 1995]. 

The near -3 slope of the vertical wavenumber spectrum for 
the gravity waves in the middle atmosphere was first noted by 
VanZandt [1982]. He suggested that such a universal spectrum 
in the atmosphere might be similar to the universal spectrum 
introduced by Garrett and Munk [1972, 1975] to describe oce- 
anic internal waves. Since then, many different theories have 
been proposed to explain the apparent universal -3 power law 
for the vertical wavenumber spectrum [e.g., Dewan and Good, 
1986; Smith et al., 1987; Weinstock, 1990; Hines, 1991; Gardner, 
1994; Zhu, 1994]. We can divide different mechanisms into two 
arbitrary categories: linear versus nonlinear. A linear mecha- 
nism usually suggests that there is a characteristic (or domi- 
nant) wave component with the amplitude growing with alti- 
tude due to the density effect. However, the characteristic wave 
component grows at a rate smaller than the inverse of the air 
density due to the existence of damping mechanisms such as 
wave breaking and radiative damping. An ensemble average of 
all characteristic wave components forms a near -3 power 
spectrum. The amplitude of a characteristic wave is also 
strongly controlled by the different generation mechanisms 
[e.g., Lindzen, 1984; Zhu and Holton, 1987]. In nonlinear mech- 
anisms all wave components interact in a way that in some 
models cascades the larger-scale waves to smaller scales [e.g., 
Dewan, 1994]. 

Even though both marginal distributions of linear and non- 
linear mechanisms may yield the same form of power law 
FEMD(m) •-' m -p with p --- 3, its local power spectra 
P(z•,, me) will exhibit different structures in terms of their 
spatial and wavenumber distributions. In the case that a single 
wave component dominates the whole spectrum one expects 
P(z•,, me) to be sharply peaked along one line as in Plate 1. 
Furthermore, the strengths and mechanisms that excite gravity 
waves at different locations and altitudes differ significantly. As 
a consequence, at a given altitude z•,, P(z•,, rn e) may not have 
an m -p power spectrum as a function of me. On the other 
hand, when the nonlinear cascade process becomes dominant, 
one may expect a universal rn -P power spectrum in rn e that is 
independent of location and altitude. 

To test which mechanism is closer to the observations, we 
present in Plate 2a the local power spectra P(z•,, rn e) calcu- 
lated from 38 horizontal wind profiles (u, v) obtained during the 
Dynamics Adapted Network for the Atmosphere (DYANA) 
campaign, carried out in January through March 1990 in the 
northern hemisphere [Offermann, 1994]. All 38 profiles were 
derived by tracking passive falling spheres released from rock- 
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ets at an apogee --95 km, with data available in an altitude 
region between 33 and 91 km. Fifteen rockets were launched at 
Biscarosse (France; 44øN, løW), and 23 rockets were launched 
at And0ya (Norway; 69øN, 16øE). It is found from Plate 2a that 
the local power spectra P(zk, m e) is peaked at a wavenumber 
m * which varies with altitude 

2.0 exp [-(z - 40)/19.5] z -< 78 km; (26) m*(z) = 0.28, z > 78 km. 
Here we define m * as the characteristic vertical wavenumber 

at which the local power spectra reach their maxima. Such a 
definition is also consistent with the m * defined by Smith et al. 
[1987] where m* is also the lower cutoff wavenumber for a 
m -3 region in the power spectrum of gravity-wave-induced 
horizontal velocity perturbations. 

A striking feature shown in Plate 2a is a disjointed secondary 
maximum in P(zk, me) above 60 km with its peak vertical 
wavenumber m* 1 order of magnitude greater than the pri- 
mary m* defined by (26). The clear separation between m * 
and m* shown in P(z•, me) suggests that there exists two 
different physical processes above 60 km. Because of the at- 
mospheric density effect, the response function of a falling 
sphere to high wavenumber wind fluctuations decreases rapidly 
with the altitude [Hass and Meyer, 1987]. Therefore the sec- 
ondary maximum in P(z•, me) above 60 km will correspond to 
very strong gravity wave activities if it were due to wind 
fluctuations. We believe that this secondary maximum in 
P(z•, me) is due to sphere vibrations caused by shock waves 
emitted from the falling spheres [e.g., Lighthill, 1978; Landau 
and Lifshitz, 1987]. 

It can be easily shown that a free-falling sphere reaches the 
speed of Mach 1 (speed of sound •300 ms -• around the 
winter mesopause) at a traveling distance of •/H/2 when ini- 
tially released at rest, where •/= Cp/C v = 1.4 is the ratio of the 
specific heats and H is the scale height. At a certain stage the 
falling sphere will reach a terminal velocity that decreases with 
the decreasing altitude because the air drag increases [Miller, 
1969]. Eckermann and Vincent [1989] estimated that the ter- 
minal velocity at 60 km is about Mach 0.5 (150 ms-•). There- 
fore we expect spheres to fall supersonically above -65 km. 
For a sphere falling at a speed greater than Mach 1 the shock 
waves are emitted downward within a cone with an acute angle 
of cos -• (l/M), where M is the Mach number. The emission 
of shock waves may cause the sphere to experience a jolt at 
high frequency which results in a high wavenumber oscillation 
in the retrieved vertical profile at that altitude. Between 60 and 
65 km the sphere could still suffer a forced oscillation due the 
catch-up of the shock waves previously emitted above 65 km. It 
should be noted that because of the atmospheric density effect, 
the secondary peak wavenumber m* tilts with height in a form 
similar to m*. Such an unrealistic feature about the wind 

profiles will be difficult to identify by conventional Fourier 
analysis. 

To quantitatively examine which mechanism is more respon- 
sible for a possibly observed near -3 slope in the Fourier 
analysis [e.g., Zhu, 1994], we show in Figure 8 the marginal 
distributions at different altitude ranges. We see from the fig- 
ure that the marginal distribution for the entire region from 35 
to 85 km, F•d•(m), shows an overall near -3 slope except 
around 4 km- • where the localized energy density bump due to 
the shock waves produces to a -2 slope. Again, without the 
knowledge of the local power spectrum it will be difficult to 

realize two distinct processes that are responsible for the ap- 
parently smooth -2 slope in the marginal distribution or the 
power spectrum from Fourier analysis. By looking into indi- 
vidual contributions from the local power spectra to the mar- 
ginal distribution we can identify some individual physical pro- 
cesses that are responsible for the form of the marginal 
distribution, Fml(m ). 

Next, we calculate the marginal distribution for the entire 
region but contributed spectrally only from the following wave- 
number band, Fm.(m), 

Log•0 (m*(z)) - 0.25 -< Log•0(m) -< Log•0(m*(z)) + 0.25, 

(27) 

where m *(z) is defined by (26). The result is also plotted in 
Figure 8. We see that when the vertical wavenumber m < 0.1 
km -• (or vertical wavelength L z > 63 km), the two marginal 
distributions are almost identical indicating that characteristic 
gravity waves parameterized by a single wavenumber contain 
most of the energy. Such a picture is consistent with the "quasi- 
monochromatic" parameterization of gravity wave processes 
advocated by Yamanaka and Fukao [1994] where the dominant 
vertical wavenumbers have form similar to (26). Furthermore, 
the marginal distribution Fm.(m) is much closer to an m- 3 
power law than F•d•(m). Returning to Plate 2a, we now can 
clearly identify that the small bump of a local m- 2 power law 
in Fan(m) is caused by a secondary maximum in P(z•, m e) 
above 60 km that has a vertical wavenumber m* - 2 km -• 

(L z - 3 km). To exclude the nonstationary effects of the 
atmospheric density and stratification, we calculate and plot in 
Figure 8 the marginal distributions of 3 km slabs centered at 
different altitudes Fs•ab(m ). After excluding the unphysical 
bumps above 60 km, we see that when m > 3 km -• (Lz < 2 
km), the marginal distributions for the slabs generally exhibit a 
power law distribution m-P withp = 2 • 4. This result is also 
consistent with the wavelet spectrum analysis of the lower 
stratospheric temperature and wind observations [Sato and 
Yamada, 1994]. When m < 3 km -• (L z > 2 km), the slab 
marginal distributions show a distinct feature of systematic 
shifting of the peak Fs•b(m ) toward smaller vertical wavenum- 
ber as the altitude increases. The shifting is consistent with 
variation of the characteristic vertical wavenumber along the 
altitude, as indicated in Figure 8. However, there appears no 
universal power law that can fit Fs•b(m ) for m* < m < 3 
km -• even though a -3 power law exists in F•n(m) in this 
wavenumber range. 

In Plate 2a we also show the local power spectra P(zk, m e) 
calculated from 175 horizontal wind profiles (u, v) from me- 
teorological rocket soundings at Thule (77øN, 69øW). The data 
cover the altitude range from 20 to 60 km with 1 km vertical 
resolution [Eckermann et al., 1994]. Here, we see again a rel- 
atively concentrated P(zk, me) around m = 1 km -• (L z = 
6.3 km). Furthermore, since more wind profiles have been 
used, P(z•, m e) is smoother than in Plate 2a. However, be- 
cause of the lower resolution of the data, many features of 
P(z•, m e) at higher vertical wavenumbers may have been lost. 

5. Hodographic Analysis of Characteristic 
Gravity Waves 

We have established in section 2 a close connection between 

the WKB wave packet solutions of a dispersive-dissipative 
physical system and IMFs derived from the EMD method. In 
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the work ofHuang et al. [1997], several examples are presented 
to show that many derived IMFs have their own physical in- 
terpretations. Here we show for the DYANA campaign data 
that one IMF can be identified as a major component of 
upward propagating inertia gravity waves in the middle atmo- 
sphere. 

In falling sphere experiments the wind and temperature 
profiles are extracted from the retrieved atmospheric density 
profiles. To exclude background mean and planetary wave 
scale perturbations and to account for the strong nonstation- 
arity of the instrument response function [Hass and Meyer, 
1987], we first employ a band-pass filter to decompose a wind 
profile, u or v, into background and perturbation components 

u(z) = U(z) + u' (z). (28) 

We use a 101 points Savitzky-Golay filter corresponding to a 2 
km window width [Press et al., 1992, p. 644]. The EMD method 
is applied to the perturbation u'(z) to derive all of its IMFs 

J 

u'(z) = • u/z) 
j=l 

=Re • Uoj(Z) exp i mj(r) dr , (29) 
/=1 

whereas for the background component U(z), EMD method 
is used to derive one IMF denoted as U g 

U(z) = u•(z) + u•(z) = u•(z) 

{ z ]} + Re Uog(Z) exp i mg(r) dr . (30) 

Here the residual in the low wavenumber component Ub(Z) is 
considered as the background mean and planetary wave scale 
perturbations. We apply the same procedure to the meridional 
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Figure 9. (a) Zonal wind u observed at Biscarosse (France; 44øN, løW) and its decomposition by (28) and 
(29)' ub, u a, and u'. In the last strip, solid line and dashed line denote v a and H(ua) , respectively. (b) Five 
IMFs for the high-pass zonal wind u' shown in Figure 9a. 

components v(z). Our local power spectra presented in Plate 
2 are calculated based on all the IMFs ua(z ) and 5; ui(z ). 

In Figures 9 and 10 we present two examples of decompos- 
ing the original wind profiles into various components ub, ua, 
u', and %. We can see from figures that u a contains most of 
the wave energy for the disturbances of scales less than those 
of ub. The structures of u a in these two examples resemble 
upward propagating gravity waves with certain wavenumber 

and amplitude modulations. It is well known that at the mid 
and high latitudes, horizontal wind perturbations of a pure 
gravity wave component show elliptical rotation with height 
[e.g., Hirota and Niki, 1985]. This is because the polarization 
relation of inertia gravity waves renders a constant phase shift 
between U g and Vg components [e.g., Gossard and Hooke, 
1975]. Furthermore, the Hilbert transform of a signal also 
produces a 90 ø phase shift from the original data [e.g., 
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Same as Figure 9, except for a wind profile at Andoya (Norway; 69øN, 16øE). 

Bracewell, 1986; Karl, 1989]. In the last strips of Figures 9a and 
10a we also show v a and H(ua) profiles. Clearly, v a and H(ua) 
exhibit a near-constant phase difference in the majority of the 
region, strongly suggesting that (u a, va) are representing a 
near monochromatic inertia gravity wave. 

A convenient and quantitative way to describe the wave 
propagation characteristics is to use four Stokes parameters 
(I, D, P, Q). The Stokes parameters were first introduced for 
studying the gravity waves by Vincent and Fritts [1987]. Ecker- 

mann and Vincent [1989] suggested that the Stokes parameters 
could be calculated spectrally. Recently, Eckermann [1996] 
investigated the relationships among the Stokes parameters, 
rotary spectra, and cross-spectral methods. Given the Stokes 
parameters, some gravity wave characteristics such as the 
phase difference &g and the major axis orientation r e can be 
derived [Eckermann and V•ncent, 1989] 

/Sg = tan -• (Q/P), (31) 
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Figure 11. Correlation coefficient Corr [ua, H(va)] and the major axis orientation r a derived for all 38 wind 
profiles. 

rg = 1/2 tan -• (P/D). (32) 

In the above the axial anisotropy D and the linear polarization 
P can be straightforwardly calculated from velocity profiles 
[Eckermann, 1996] 

2 2 

D=ug- %, (33) 

P = 2u•v•, (34) 

where overbars denote height averaging of the velocity profiles 
over an altitude range longer than local vertical wavelengths. 
With the help of the Hilbert transforms of u a or v a the phase 
difference 8a can be calculated by 

sin 8a = Corr [ug, H(va)] = -Corr [va, H(ua)], (35) 
where the correlation function is defined as 

ufl() 
Corr H(vg)] = (u2 S2(t/g))l/2 . (36) 

Combining (31) and (35) gives the circular polarization param- 
eter Q. This technique of using the covariance of u' and H(v') 
for calculating Q was also indicated by Eckermann et al. [1994] 
for the total perturbation velocities (u', v'). Such an approach 
leads to a physically meaningful Q only when there exists a 
dominant wave component, as indicated by Vincent and Fritts 
[1987] by a condition of sufficiently narrow bands. Here our 
(u a, va) profiles are derived from the EMD method that 
guarantees narrow bands. Therefore present sin 8a or Q de- 
rived from (35) is accurate. The phase difference 8a is related 
to the gravity wave parameters through [Zhu, 1987] 

f ooK 2 

sin 8a = x/[(kto)2 + (ef)2][(eoo)2+ (kf)2], (37) 

where f is the Coriolis parameter, to is the Doppler-shifted 
frequency, (k, e) is the horizontal wavenumber vector, and 
K 2 = k 2 + e2. A positive correlation between u a and H(va) 
corresponds to upward propagating gravity waves in the north- 
ern hemisphere. Furthermore, (37) indicates that Isin 8al -• 1 
under either one of the following three conditions: k -* 0, 
e -* 0, or to -* f. For a fast traveling gravity wave with 
to -* N >> f, then Isin << 1 which corresponds to a linear 
polarized wave motion due to the weak inertial effect. 

Figure 11 shows the scattered plots of Corr [u a, H(va) ] and 
the major axis orientation r a, and we see that the upward 
propagating gravity waves are dominant in the middle atmo- 
sphere which is consistent with many previous studies [e.g., 
Vincent, 1984; Hirota and Niki, 1985]. Furthermore, Figure lib 
indicate that above -50 km there is an anisotropy in the 
horizontal directions of wave propagation with an NW/SE bias. 
Such an NW/SE bias in the northern hemisphere winter was 
also detected previously by Hamilton [1991]. 

6. Conclusions 

We have explored the recently developed Empirical Mode 
Decomposition (EMD) method and applied it to analyzing 
gravity wave characteristics in the middle atmosphere. An im- 
portant connection is established in this paper between the 
fundamental Intrinsic Mode Functions (IMFs) derived from 
the EMD method and WKB solutions of a dispersive- 
dissipative wave equation. Since the WKB solution corre- 
sponds to a wave packet whose structure and wavenumber are 
internally determined from the data, the IMF representations 
of wind profiles provide useful insights into physical processes 
in the middle atmosphere where the dispersive-dissipative 
wave phenomena are dominant. The positive distribution func- 
tion P(zk, m e) introduced in section 3 provides a quantitative 
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description of space-wavenumber localization of a data series. 
Application to the observed wind profiles derived from the 
DYANA campaign leads to an identification of what appear to 
be unphysical small scale oscillations by falling spheres embed- 
ded in the wind profiles above 60 km. It is found that for the 
vertical wavenumber m _< 3 km -• (L z -> 2 km) the previously 
observed m -3 Fourier spectra could be a manifestation of a 
linear wave packet whose characteristic vertical wavenumber 
decreases with altitude. For small vertical scale disturbances 

with rn > 3 km -• (L z < 2 km) a near -3 slope in the 
marginal distribution exists locally in the middle atmosphere 
with a great degree of universality, suggesting that nonlinear 
energy cascade processes might dominate the spectral forma- 
tion. It is also shown that the hodographic analysis by the 
Stokes parameters advocated by V•ncent and Fritts [1987] and 
Eckermann and Vincent [1989] can also be applied to the IMFs 
derived from the EMD method. 
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